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consider the following simplified model of a clincial trial. Patients arrive se-

quentially at a treatment center and receive ove of two treatmentst A or So The

(lenediate response of the I t patient to receive treatment A is X1, I -1.2....,

that of the j th patient to receive treatment 1 Is ji J 12*.... o At any stage
of the process, having observed X1o .. emt y 1 o...,OYU, the experimenter can stop the

experiment and declare (1) A Is the bettor treatment. (2) 1 Is better, or (3) there

Is essentially no difference between A ad 3; or he can continued the experiment

and assign the next patient to treatment A or 3 according to some allocation rule.

Zin this paper we shall be primarily interested in the experimenter's allocation rule,

* which should be selected insofar as possible (1) to permit valid Inferences upon ter-

mination of the experiment and (ii) to minimize in some sense the uuer of patients

* receiving the inferior treatment during the course of the experi men t.

The specific mathematical framework developed below to discuss this problest was

Introduced by Flehinger. Louis, Robbins, and Singer (1972) and developed by Robbins and

Siegmund (1973), Louis (1975), and Zayre (1979). To a considerable extent the present

paper is a review and exposition of these ideas. An Interesting and somewhat different

approach has been recently developed by Bather (1980, 1981), and It would be Interest-

ibe to make a systematic comparison of lather's approach with that outlined below.

We assume that Zl**X~* are Independent ht~u 1,l) and 7l'*O~g'7n'... are

Independent MuIi 2-1) random variables, and that the z'o and y's are Independent.

For an indication how the results given here can be extended via large ample apprami-

nation to non-normal data, see Robbins (1974). Let 8 - )& - 11 and to be specific

assume that the better treatment is that yielding the larger sm response. Mense to

say that treatment A is superior to say that 8 ), 0, ae.

Let x~mE~, i - n1 Za I and n;;~~.Dvn

observed x 1 ... z,. an l, .. 9yo the natural estimator of 8 Is

* ~Since problems of statistical Inference about 8 are Invariant undrchne in o-

cation of the data, it Is reasonable to consider Invariant procedures, I.e. those based

on the process smn', snn 1 or equivalently on u Ia x 1 -:1 , I - 1,loo... and

vj s j xj9 a192.. .our fiLest result is a "eatl torwhich says tht

is a certain sense the problem of statistical Inference about 4 1e ha e searated froa

the problem of allocation, provided we restrict onrelves to invariant, OVeeedUres (cf.

Lomae I of Robbins and Siewmind, 1973).

it is convenient to Intrduce the following notations
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W(t) - ,rowsa motin with drift* ,

Zv ((s), * _< t) ,

roposltion I. Wro arbitrary s,3 .

L(z+3g,- Z,.l3 ,. - &(W(t, U. -6 (tm.a Iaw(t..2)

Md

2(.,,U+ - .a ) a M(t'.n) -V(,:.,) IN"8.))

proof. Si ple algebra yields

(1) S+l'a -%3,a - uxa33llaU/+l) - UC Y + E e)(uiu4.1)

it is easy to see that the tvo term an the right band side of (1) are b umcoorre-

lated with U, ,I i_ a and vi, 3 I a. ene by properties of the aorm distribution

8al,u %, n  given an, is normally distributed -with expectation

Pn,1 (uarPl) - 3(!j m 3  ( )( 1

- 3-6,(343)(34,+1) - (eu., 3 - e n~)

and variance

In/(~nS1)) a /(us)(uza+L) - tu!l , - • ,

not this Is precisely the Conditiomal distributiem of W(tm4 1o) - tm. mU) given

a). A similar arvost applies to * - %,a.

€orollary 1..tor on? invariant alUlcatim rule the proses

sad

ems inrtiugalee,

Am Amportmat em"wmemm ol PemOpite is Aft Le* MY eUOn l is ,s.0 besed
om the proess ,a o ,* aid at , im s" "la,,,e,,-

usrphie alocatio isle bots V(WO am& ON des o "A"

*I--,~.



(amen1) am (U. t a, b ame ont sthet"he am"d if
0 4te C mvarious all1ocaties, vales ypld sequences of "observtioms' W(t)

0 <t 3  < t W. differ oMly I the (rand) times at which the Douni as path is

observed. UssauSe the koiam paths ae ontlasous mad the Inremsto ta *l - t a

or ti - ti E (0,1), the eact betes of allocation rule b a limitod effect

an the Joint distribution of the observed data provided ts, * tf - +n *. In

particular. if the proess (W(tu ), ta's is observed vtil It first leave soe
region with a continumus boeudary In the spece time plase, the point at which the

process leaves the regioe has a distribution which to approximtely Independent of the

allocation rule.

For our present purposes this he the followi g consequences. Asaume temporarily

that the allocation rule does not depend on the data - for example that observations

are taken in pairs (x 1 ,y 1 ), I - 1,2,... and vw " X 1 - y. Assume also that in this

context we favor a particular proceudre for making inferences about 8 - neri. For

example, to test Io: 8 - 0 we stop sampling at miu(T,2v), where

1T - Inf (a: I Z vJl Z 21)

I

that 8> 0; if T < 2v and vl <- 2b ve reject % and say that < 0; If

T > 2v we accept NO as being approximately true. The power function of this test

of aO: 8 - 0 against Hl: 6 # 0 Is Pa(T < 2v) and the expected sample size io

a8(T A 2v). For any invariant allocation rule there exists the analogous pTocedure:

stop sampling when un/(+n) > V or at

ii) - f{(-.n): Iz lI ' hb ,

whichever occurs first, and reject V0: 8 - 0 If and only if M/0+1) :. i. It

follows from the remarks following Proposition I that the power function

?8606I(0+1) < Vi of this test satisfies

(2) P {/bI(+ ) 5 vZ P?(T < 2V

ad

(3) n6i M J+#uI A v) - tS A 2v)

ance we have obtained a qu" tl test Whtse powr fumestian is to a contsierable

extest nde- a1eet of the ileestie rl used, aid we we fe to cosider difeeat

allocation ules I as attept to iau~d" the bw f obfservations takes am the

Isforlr tr tm t.
$



Note that althemh we proceed with the discussion for me particular sequetial

test, we could equally vell consider others, e.g. & repeated si4gnifeSMco test.'
Before we consider In detail the ch ice of allocatiom rule, it Is belpful to eb-

serve the following liats Imposed by (3). Let N and N demote the 0060 Of z

and y oberertioma respectively when sampling stops, 0O VM +1,) (Il(A+)I A v.

Since mi(Kn) W/ (m + x). with equality If and only if mes ,) -- , It follows

from (3) that

(4) in1K1) ' 6  A 2v)

and a necessary condition for approximate equalitA In (4) is that max(R31,3l) be

extremely large. Since x(l-x) <_ 1/4 with equality if and only if x - 1/2, by (3)

(5) Ia (+N) t 6 l(= + K)) ; 296 (T A )

and there is equality in (5) if and only If N and I are appreoimtely equal with

probability one. From (4) and (5) we conclude that the expected ember of observations

on the inferior treatmeut is at least 1/2 as large as pairwise allocation requires;

and any deviation from pairwise allocation results in some Increase in the total am-

pected ample size.

The iL.,.mLng argument for choosing an allocation rule is due to Zayre (1979).

Suppose that when 6 is the true difference In mean response, the cost to the experi-

mater of an x observation is S(6) while that of a y observation is h(a). lence

the total expected cost of ampling i

(6) s(M)Is(K) + h(6)36(N) .

overall risk function is the em of (6) and the risk associated with making a

wrong terminal decision. But since the power function of our test is essentially in-

dependent of the allocation rule used, we ca ignore the terminal decision part of the

risk function and attempt to minimize (6). Since

(7) K - 1331(N+N)J(l+K/U) - [.W I(+))(l+Q),

say, and

(5) N - [,u/o+4)]Cl+Q 1z) ,

we cam rewrite (6) as

(9) Ib+5 s UI Oi ) e~+)) ue{(UA1C44N)14 1)



or.eover, by (3) the fist term In (9) to esasenrt.aIads aRidemt Of dh e40.aa~s
rule, go attt to mina th aoeseend. Calcals oboo thee for every

NQ + bql ). 2(oh) 1 /2  with equlity it end emly If

Bmnco a lower bound to (9) Is

,(11) .z/2 + 21/2)2 16 [NE(+nu]

which could be achieved only if ve could allocate observations so that

(12) [(6)h(6) 1 2

Since a is unknown this is impossible, but as an approxlmatiou ve consIder the alo-

cation rule which takes the next observation from the y population If and only if

(13) U/u' <g l(-1 1

To the extent that this allocation rule behaves as we hope It will, I.e. to the extent

that (12) is approximately true, by (7) and (8) we have the approximation*

(14) 16 (m) - E6 [WOI+M))[1+(h/g) 11 2  ,

(15) 1za(N) Ea IlN/(M+ N)III+ (2lh) 1 /2

and the risk (6) Is approximately the lower bound (11).

A numerical example Illustrating these results Is given In Table 1. The functions

8 and h are of the form

(16) sif a h(-2) if0

1 if C 0

This choice has the Interpretation that the basic (jeper amstal) oat of am observation

is uity, and the additional (ethical) cast of assignang the isarir treatmst ts

Moportiemal to 161. For covarion the first rw Is eah eeal of ble I tofo

,4irVie allocation, and the oemputatieom of power and eqeoted s le *I". use the

appsslmatimes suglested by Kemi (1979) sad showw to be very acurate. Th second

tow sof each sell gives revolts for the epLin rele (13) with 8 aid h &olsed by

(16). The first entry is the outcome of a 400 repeti cim Uate YM Ol* W ft , and

.5
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the parenthetical entry Is the theoretical ipproulaation given by (15), (14), or (11).

The Monte Carlo results lend support to our laoomal Satorpcotaton of Proposition I

to the effect that the power and %P/I31 are a-Ppremlnately Independent of tae
allocation rule, and they Indicati that the apw moe (13), (14). and (11) wre

quite good. flayre (1979) reached the se conclusions for a different stopping rule
and va~lue of d in,(16). Most importantly the ;;esults @bow a fairly substantial de-

crease iu risk of about 15-30Z when the allocation rule'(13) is used.

TAILS 1

First row in each cell Is for pairwise allocation; second row Is for allo-

cation rule (13) with h and g given by (16) with d - 20; In all cases
b - 10.8, V - 25; theoretical calculations are In parentheses; other& are
Monte Carlo

46 Power ES ("o EfI RtM~*U)sk

1.13 (1.00) (19.9) (19.9) (19.9) (490)

1.00 12.3 (12.0) 53.7 (58.3) 20.0 343 (341)

.85 ( .986) (26.4) (26.4) (26.4) (502)

.995 15.9 (16.9) 62.7 (59.7) 25.2 349 (363)

.57 ( .788) (36.8) (36.8) (36.8) (493)

.793 24.0 (23.6) 77.5 (83.2) 36.3 375 (376)

.28 ( .279) (46.7) (46.7) ("6.7) 0~55)

.298 36.4 (32.5) 77.4 (83.5) 46.6 318 (29)

.00 (.050) (49.5) (49.5) (49.5)

.048 54.1 56.3 49.6

The reduction in risk of 15-302 compared to pairwise sampling In Table 1 adkas

the allocation rule (13) sown attractive; but it Is not large enough to overwhelm cer-

tain disadvantages without further luvvestigation. (by way of comparison a fixed sample

size with paired observations reouires 45 pairs to achieve about the sae powr E mo-

tion as In Table 1. This leads to risks of 1181 adi 912 for 4 -1.13 and .65, so
sequential samling with palmuise allocation leads to a sttie. I& risk fey Is"*

161 of about sox competed to a fixed seep*s) UO 611 -iesa Sal.s (IL) aba lent
that the allocation rule (13) to s-ramdamized, (S1) qmti a po foume Of
the patient population is setecifled, (OWl da"001Wi 16 00e~e U "
wre amilsmed seesatimily. but swe up654M sI -Iw oill $ON h
Sinzvval data, *we teafese asimowi w a to as" A pM am0" W mm



become available am old oneo. Accomodating these difficulties leads tolsome deterto-
ratio* in the performance of adaptive allocation rules, which way lead to questioning
their desirability at all. Rere me. discuss (I) and (11) or mes"s 9f a Monte Carlo
experiment.

The advantages of randomization in clinical trials has been discussed at great
length-primarily In an effort to eliminate selection bias (e.g. Blackwell and Dodges,
1957),* but secondarily to provide the possibility of a permutation test of the hypoth-
esis of so treatment effect. It Is easy to def ins a randomized version of (13) to cut
down on selection bias. For example, vesmight select treatment I or treatmnt A with
relative probabilities given by the right hand side of (13). More precisely, let

"a. n ni am /~ ay)

and take the next observation from the y populat ion if and only If

(17) UmU 1X' (+ ),MU

where U1,Ui.... is an auxiliary sequence of independent uniform random variables which
we generate. Asymptotically this rule generates the appropriate relative frequencies
of treatment selections. A more sophisticated version would be one which takes account
of how far n/rn is from the desired ratio of X In selecting the next treatment.W'n
For g and h given by (16) with d m20, and for 6 In the rafts(1.1 the
right hand side of (17) is in the range (.l,.9) with high probability, so there Is
always some indeterminacy In the next treatment assignment.

TAILE 2

Randomized Allocation (17)

b 10.8, v -25, & and h given by (15)u th d -20

6 Power Z a(N) 96M 2E UI1.) Risk

1.13 1.00 12.7 50.3 19.5 350

.85 .995 18.2 60.3 26.8 386

.57 .793 26.6 72.4 37.0 402

.28 .315 38.6 72.0 46.0 328

Table 2 gives the outcome of a 400 replication Houte Carlo experiment beIng the
radmmized allocation rule (17). By comparison with Table I we sem that randomization
has led consistently to am increase In risk, but one so slieht that the bee1fits of
radomization @an 06 outweigh the liability.



Th usinof stratification is more complicated because the results may dependI
on the number and relative sizes of different strata. The difficulties are most acute
with a large number of small strata, where one usually wants to guarantee a certain
amount of balance In the ample from each stratum, so that a stratum could be analyzed
by itself if the model relating different strata soeem to be Inappropriate.

To be specific suppose there are r strata and for k - ,,.,,In stratum
k the response of. the It patient on treatmpnt A Is x.k1, which is distributed
h(lUa+ 6,1), and that of the j t patient on treatment 3 is Ykj, distributed fo~~

After mk assignment* of treatment A and nk of treatment I In the k stratum, the
maximum likelihood estimator of the treatment effect 8 is (in th, obvious notation)

(18) - K-;4 , (xkmk-yk. nk)

k-l k+n

Let z(z,.n) denote the numerator and t m~n the denominator of _~m

It is easy to obtain a result analogous to Proposition 1, and hence to conclude

that z~a,.E) behaves like Brownian motion with drift 6 in the time scale of t(u,n)
provided that an invariant treatment allocation rule is used. Here Invariant mans
that the choice of the next treatment assignment may depend only on the vector of
differences 0~l1 liln .... ';r9U,-irn). Hence as above we can test 8 - 0 with a
test whose power function is essentially Independent of the (invariant) allocation rule

used, and vs can turn our attention to the cost of sampling.

In analogy with (6) suppose the expected cost of sampling is given by

(19) N()3I

k k

Where M.k (NOk is the number of x's (y's) observed In the kt stratum, k 1,2,... r.

The argument leading to (11) nov gives as a lower bound to (19)

k-l

and there is equality between (19) and (20) If and only if (cf. (12))

(21) PG(N/k/g ' jz(6)Ih(6)jl/ 2 ) _ 1 for all k -

This suggests In analogy with (13) that If a new patient arrives and falls inte, stratum
k, then he is assigned treatmnt 3Iif and only if

(22) n/nk CIC~~)/((~)1



where 8 is given in (18).
8owver, there to an additional practical consideration, which is especially Im-

portent when there are small strata. The model of fixed trawtmt effect across strata

is somewhat tentative and usually must be checked. To do this requires a minimal

amount of balance in the assignment of treatments in each stratum individually. Hew.
we modify the sampling rule (22) by choosing some small positive amber v0 , and use

(22) only if mknk/(k+nk) • V0 . If aknk/(mk~ nk) < V0' we make the treatment

assignment in some way that provides for about half of the first 4v0  patients to re-
ceive one treatment and half the other. Of course, this affects our ability to approx-

Imate (21), especially in small strata where the threshold V0 may not be exceeded;

but it avoids the disastrous situation where almost all assignments in a small stratum

are to one treatment.

Table 3 reports the results of a Monte Carlo experiment to determine the effects

of stratification together with randomization. The test is defined by the same param-

eters as those in Tables 1 and 2, and hence has essentially the same power function.

There are four strata in the relative sizes 4:3:2:1. The threshold is V0 M 3, and
strict pairwise sampling is used in each stratum until this threshold is reached.

Thereafter a randomized version of (21) as specified in (17) is used.

The results are more ambiguous than in Table 2. For large 181 stratification

substantially increases the risk to the extent that sequential data dependent allo-

cation seems only slightly better than pairwise sampling. For small 181 there Is a

comparatively insignificant increase in risk. Although these results are not sur-

prising qualitatively, and therefore probably persist to some extent under different

TABLE 3

Stratified Data, Randomized Allocation

b - 10.8, VO M3, -25, d - 20

8 Pawer. Z EaNk E 'N' 2 1 Ee[NkNk/Ofkk~,)) Risk
k k k

1.13 1.00 17.6 23.8 19.8 439

.85 .990 22.3 35.1 26.6 449

.57 .848 29.2 47.8 35.2 409

.28 .288 40.3 61.1 46.9 327

experimental conditions, the exact magnitude of the changes may wall be sensitive to

the number and sie of the strata, the parameters b, V0, V, etc.

A conclusion to be draw from Tables 2 and 3 is that practical constraints on

using an allocation rule like (13) may reduce the advantage over pairlise allocation

exhibited in Table 1, and suggest that some study of those conatraiata relevat to a
L9



particular problem should probably be made before seriously contemplating use of a

sequential allocation scheme.

Remarks (i). It seems to be an interesting mathematical problem to explain the success

exhibited in Table 1 for the approximations (14) and (15). Heuristic arguments Indi-

cate that these approximations should be valid to within 0(1) as b * m, V ,

and W - 1 - const. But proving this result or, what is more interesting, determining

the constant implicit in the 0(1) -may be rather difficult.

(ii) A challenging problem is to extend Proposition 1 and its consequences to other

situations. An interesting discussion by Jennison, Johnstone, and Turnbull (1981)

shows that the naive generalization to three populations is not valid.
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